skip to main content


Search for: All records

Creators/Authors contains: "Zaiats, Andrii"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large‐scale disturbances, such as megafires, motivate restoration at equally large extents. Measuring the survival and growth of individual plants plays a key role in current efforts to monitor restoration success. However, the scale of modern restoration (e.g., >10,000 ha) challenges measurements of demographic rates with field data. In this study, we demonstrate how unoccupied aerial system (UAS) flights can provide an efficient solution to the tradeoff of precision and spatial extent in detecting demographic rates from the air. We flew two, sequential UAS flights at two sagebrush (Artemisia tridentata) common gardens to measure the survival and growth of individual plants. The accuracy of Bayesian‐optimized segmentation of individual shrub canopies was high (73–95%, depending on the year and site), and remotely sensed survival estimates were within 10% of ground‐truthed survival censuses. Stand age structure affected remotely sensed estimates of growth; growth was overestimated relative to field‐based estimates by 57% in the first garden with older stands, but agreement was high in the second garden with younger stands. Further, younger stands (similar to those just after disturbance) with shorter, smaller plants were sometimes confused with other shrub species and bunchgrasses, demonstrating a need for integrating spectral classification approaches that are increasingly available on affordable UAS platforms. The older stand had several merged canopies, which led to an underestimation of abundance but did not bias remotely sensed survival estimates. Advances in segmentation and UAS structure from motion photogrammetry will enable demographic rate measurements at management‐relevant extents.

     
    more » « less
  2. Abstract

    Understanding interactions between environmental stress and genetic variation is crucial to predict the adaptive capacity of species to climate change. Leaf temperature is both a driver and a responsive indicator of plant physiological response to thermal stress, and methods to monitor it are needed. Foliar temperatures vary across leaf to canopy scales and are influenced by genetic factors, challenging efforts to map and model this critical variable. Thermal imagery collected using unoccupied aerial systems (UAS) offers an innovative way to measure thermal variation in plants across landscapes at leaf‐level resolutions. We used a UAS equipped with a thermal camera to assess temperature variation among genetically distinct populations of big sagebrush (Artemisia tridentata), a keystone plant species that is the focus of intensive restoration efforts throughout much of western North America. We completed flights across a growing season in a sagebrush common garden to map leaf temperature relative to subspecies and cytotype, physiological phenotypes of plants, and summer heat stress. Our objectives were to (1) determine whether leaf‐level stomatal conductance corresponds with changes in crown temperature; (2) quantify genetic (i.e., subspecies and cytotype) contributions to variation in leaf and crown temperatures; and (3) identify how crown structure, solar radiation, and subspecies‐cytotype relate to leaf‐level temperature. When considered across the whole season, stomatal conductance was negatively, non‐linearly correlated with crown‐level temperature derived from UAS. Subspecies identity best explained crown‐level temperature with no difference observed between cytotypes. However, structural phenotypes and microclimate best explained leaf‐level temperature. These results show how fine‐scale thermal mapping can decouple the contribution of genetic, phenotypic, and microclimate factors on leaf temperature dynamics. As climate‐change‐induced heat stress becomes prevalent, thermal UAS represents a promising way to track plant phenotypes that emerge from gene‐by‐environment interactions.

     
    more » « less
  3. null (Ed.)
    Biodiversity science encompasses multiple disciplines and biological scales from molecules to landscapes. Nevertheless, biodiversity data are often analyzed separately with discipline‐specific methodologies, constraining resulting inferences to a single scale. To overcome this, we present a topic modeling framework to analyze community composition in cross‐disciplinary datasets, including those generated from metagenomics, metabolomics, field ecology and remote sensing. Using topic models, we demonstrate how community detection in different datasets can inform the conservation of interacting plants and herbivores. We show how topic models can identify members of molecular, organismal and landscape‐level communities that relate to wildlife health, from gut microbes to forage quality. We conclude with a future vision for how topic modeling can be used to design cross‐scale studies that promote a holistic approach to detect, monitor and manage biodiversity. 
    more » « less
  4. Abstract

    Interactions between neighboring plants are critical for biodiversity maintenance in plant populations and communities. Intraspecific trait variation and genome duplication are common in plant species and can drive eco‐evolutionary dynamics through genotype‐mediated plant–plant interactions. However, few studies have examined how species‐wide intraspecific variation may alter interactions between neighboring plants. We investigate how subspecies and ploidy variation in a genetically diverse species, big sagebrush (Artemisia tridentata), can alter the demographic outcomes of plant interactions. Using a replicated, long‐term common garden experiment that represents range‐wide diversity ofA. tridentata, we ask how intraspecific variation, environment, and stand age mediate neighbor effects on plant growth and survival. Spatially explicit models revealed that ploidy variation and subspecies identity can mediate plant–plant interactions but that the effect size varied in time and across experimental sites. We found that demographic impacts of neighbor effects were strongest during early stages of stand development and in sites with greater growth rates. Within subspecies, tetraploid populations showed greater tolerance to neighbor crowding compared to their diploid variants. Our findings provide evidence that intraspecific variation related to genome size and subspecies identity impacts spatial demography in a genetically diverse plant species. Accounting for intraspecific variation in studies of conspecific density dependence will improve our understanding of how local populations will respond to novel genotypes and biotic interaction regimes. As introduction of novel genotypes into local populations becomes more common, quantifying demographic processes in genetically diverse populations will help predict long‐term consequences of plant–plant interactions.

     
    more » « less
  5. Whole‐genome sequencing is revolutionizing our understanding of organismal biology, including adaptations likely to influence demographic performance in different environments. Excitement over the potential of genomics to inform population dynamics has prompted multiple conservation applications, including genomics‐based decision‐making for translocation efforts. Despite interest in applying genomics to improve translocations, there is a critical research gap: we lack an understanding of how genomic differences translate into population dynamics in the real world. We review how genomics and genetics data could be used to inform organismal performance, including examples of how adaptive and neutral loci have been quantified in a translocation context, and future applications. Next, we discuss three main drivers of population dynamics: demographic structure, spatial barriers to movement, and introgression, and their consequences for translocations informed by genomic data. Finally, we provide a practical guide to different types of models, including size‐structured and spatial models, that could be modified to include genomics data. We then propose a framework to improve translocation success by repeatedly developing, selecting, and validating forecasting models. By integrating lab‐based and field‐collected data with model‐driven research, our iterative framework could address long‐standing challenges in restoration ecology, such as when selecting locally adapted genotypes will aid translocation of plants and animals.

     
    more » « less
  6. Abstract

    Despite broad recognition that water is a major limiting factor in arid ecosystems, we lack an empirical understanding of how this resource is shared and distributed among neighbouring plants. Intraspecific variability can further contribute to this variation via divergent life‐history traits, including root architecture. We investigated these questions in the shrubArtemisia tridentataand hypothesized that the ability to access and utilize surface water varies among subspecies and cytotypes.

    We used an isotope tracer to quantify below‐ground zone of influence inA. tridentata, and tested whether spatial neighbourhood characteristics can alter plant water uptake. We introduced deuterium‐enriched water to the soil in plant interspaces in a common garden experiment and measured deuterium composition of plant stems. We then applied spatially explicit models to test for differential water uptake byA. tridentata, including intermingled populations of three subspecies and two ploidy levels.

    The results suggest that lateral root functioning inA. tridentatais associated with intraspecific identity and ploidy level. Subspecies adapted to habitats with deep soils generally had a smaller horizontal reach, and polyploid cytotypes were associated with greater water uptake compared to their diploid variants. We also found that plant crown volume was a weak predictor of water uptake, and that neighbourhood crowding had no discernable effect on water uptake.

    Intraspecific variation in lateral root functioning can lead to differential patterns of resource acquisition, an essential process in arid ecosystems in the contexts of changing climate and seasonal patterns of precipitation. Altogether, we found that lateral root development and activity are more strongly related to genetic variability withinA. tridentatathan to plant size. Our study highlights how intraspecific variation in life strategies is linked to mechanisms of resource acquisition.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less